吵吵   2011-06-18  阅读:7,646

一个师弟想在64位的机子上编译我的802.1x认证程序,好像是arclinux,听说这个系统很小哈。把我的c语言写的smustar代码拷贝过去了,并花了不少时间弄好了gcc编译环境和libpcap库,结果make是顺利过去了,后来发现登录提示失败,我的神。发了两三个包让我看看,我都没看出个所以然。最后,我把焦点放到了md5加密上,因为只有这串数字是我不知道是不是正确的,打开md5.c里面看看,发现都没有uint32这么定义的,也许问题就出现在这里。

网上找了一个md5加密算法,后来测试可以用了,支持64位系统,输出结果一致:

//md5.h

#ifndef MD5_H

#define MD5_H



#ifdef __alpha

typedef unsigned int uint32;

#else

typedef unsigned long uint32;

#endif



struct MD5Context {

        uint32 buf[4];

        uint32 bits[2];

        unsigned char in[64];

};



extern void MD5Init();

extern void MD5Update();

extern void MD5Final();

extern void MD5Transform();



/*

* This is needed to make RSAREF happy on some MS-DOS compilers.

*/

typedef struct MD5Context MD5_CTX;



#endif /* !MD5_H */





//md5.c

/*

* This code implements the MD5 message-digest algorithm.

* The algorithm is due to Ron Rivest.    This code was

* written by Colin Plumb in 1993, no copyright is claimed.

* This code is in the public domain; do with it what you wish.

*

* Equivalent code is available from RSA Data Security, Inc.

* This code has been tested against that, and is equivalent,

* except that you don't need to include two pages of legalese

* with every copy.

*

* To compute the message digest of a chunk of bytes, declare an

* MD5Context structure, pass it to MD5Init, call MD5Update as

* needed on buffers full of bytes, and then call MD5Final, which

* will fill a supplied 16-byte array with the digest.

*/



/* Brutally hacked by John Walker back from ANSI C to K&R (no

   prototypes) to maintain the tradition that Netfone will compile

   with Sun's original "cc". */



#include <memory.h>        /* for memcpy() */

#include "md5.h"



#ifdef sgi

#define HIGHFIRST

#endif



#ifdef sun

#define HIGHFIRST

#endif



#ifndef HIGHFIRST

#define byteReverse(buf, len)    /* Nothing */

#else

/*

* Note: this code is harmless on little-endian machines.

*/

void byteReverse(buf, longs)

    unsigned char *buf; unsigned longs;

{

    uint32 t;

    do {

    t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |

        ((unsigned) buf[1] << 8 | buf[0]);

    *(uint32 *) buf = t;

    buf += 4;

    } while (--longs);

}

#endif



/*

* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious

* initialization constants.

*/

void MD5Init(ctx)

    struct MD5Context *ctx;

{

    ctx->buf[0] = 0x67452301;

    ctx->buf[1] = 0xefcdab89;

    ctx->buf[2] = 0x98badcfe;

    ctx->buf[3] = 0x10325476;



    ctx->bits[0] = 0;

    ctx->bits[1] = 0;

}



/*

* Update context to reflect the concatenation of another buffer full

* of bytes.

*/

void MD5Update(ctx, buf, len)

    struct MD5Context *ctx; unsigned char *buf; unsigned len;

{

    uint32 t;



    /* Update bitcount */



    t = ctx->bits[0];

    if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)

    ctx->bits[1]++;     /* Carry from low to high */

    ctx->bits[1] += len >> 29;



    t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */



    /* Handle any leading odd-sized chunks */



    if (t) {

    unsigned char *p = (unsigned char *) ctx->in + t;



    t = 64 - t;

    if (len < t) {

        memcpy(p, buf, len);

        return;

    }

    memcpy(p, buf, t);

    byteReverse(ctx->in, 16);

    MD5Transform(ctx->buf, (uint32 *) ctx->in);

    buf += t;

    len -= t;

    }

    /* Process data in 64-byte chunks */



    while (len >= 64) {

    memcpy(ctx->in, buf, 64);

    byteReverse(ctx->in, 16);

    MD5Transform(ctx->buf, (uint32 *) ctx->in);

    buf += 64;

    len -= 64;

    }



    /* Handle any remaining bytes of data. */



    memcpy(ctx->in, buf, len);

}



/*

* Final wrapup - pad to 64-byte boundary with the bit pattern 

* 1 0* (64-bit count of bits processed, MSB-first)

*/

void MD5Final(digest, ctx)

    unsigned char digest[16]; struct MD5Context *ctx;

{

    unsigned count;

    unsigned char *p;



    /* Compute number of bytes mod 64 */

    count = (ctx->bits[0] >> 3) & 0x3F;



    /* Set the first char of padding to 0x80. This is safe since there is

       always at least one byte free */

    p = ctx->in + count;

    *p++ = 0x80;



    /* Bytes of padding needed to make 64 bytes */

    count = 64 - 1 - count;



    /* Pad out to 56 mod 64 */

    if (count < 8) {

    /* Two lots of padding: Pad the first block to 64 bytes */

    memset(p, 0, count);

    byteReverse(ctx->in, 16);

    MD5Transform(ctx->buf, (uint32 *) ctx->in);



    /* Now fill the next block with 56 bytes */

    memset(ctx->in, 0, 56);

    } else {

    /* Pad block to 56 bytes */

    memset(p, 0, count - 8);

    }

    byteReverse(ctx->in, 14);



    /* Append length in bits and transform */

    ((uint32 *) ctx->in)[14] = ctx->bits[0];

    ((uint32 *) ctx->in)[15] = ctx->bits[1];



    MD5Transform(ctx->buf, (uint32 *) ctx->in);

    byteReverse((unsigned char *) ctx->buf, 4);

    memcpy(digest, ctx->buf, 16);

    memset(ctx, 0, sizeof(ctx));        /* In case it's sensitive */

}





/* The four core functions - F1 is optimized somewhat */



/* #define F1(x, y, z) (x & y | ~x & z) */

#define F1(x, y, z) (z ^ (x & (y ^ z)))

#define F2(x, y, z) F1(z, x, y)

#define F3(x, y, z) (x ^ y ^ z)

#define F4(x, y, z) (y ^ (x | ~z))



/* This is the central step in the MD5 algorithm. */

#define MD5STEP(f, w, x, y, z, data, s) \

    ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )



/*

* The core of the MD5 algorithm, this alters an existing MD5 hash to

* reflect the addition of 16 longwords of new data. MD5Update blocks

* the data and converts bytes into longwords for this routine.

*/

void MD5Transform(buf, in)

    uint32 buf[4]; uint32 in[16];

{

    register uint32 a, b, c, d;



    a = buf[0];

    b = buf[1];

    c = buf[2];

    d = buf[3];



    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);

    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);

    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);

    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);

    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);

    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);

    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);

    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);

    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);

    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);

    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);

    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);

    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);

    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);

    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);

    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);



    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);

    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);

    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);

    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);

    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);

    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);

    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);

    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);

    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);

    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);

    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);

    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);

    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);

    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);

    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);

    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);



    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);

    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);

    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);

    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);

    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);

    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);

    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);

    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);

    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);

    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);

    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);

    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);

    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);

    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);

    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);

    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);



    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);

    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);

    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);

    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);

    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);

    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);

    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);

    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);

    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);

    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);

    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);

    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);

    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);

    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);

    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);

    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);



    buf[0] += a;

    buf[1] += b;

    buf[2] += c;

    buf[3] += d;

}

</code>
可以看到它的uint都是定义为uint32的,就是说64位操作系统中也是32位来算
这里有个使用例子:www.chaochaoblog.com
<code lang="c">

     struct MD5Context md5c;

     char *s;
//加密前的数据
     unsigned char ss[16];
//加密返回的数据
 


     MD5Init( &md5c );

     MD5Update( &md5c, s, strlen(s) );

     MD5Final( ss, &md5c );


     //好了ss就是加密后的字符串了

吵吵微信朋友圈,请付款实名加入:

吵吵 吵吵

3条回应:“md5的c语言加密算法(支持32位和64位系统)”

  1. CO2说道:

    你的師弟又來了……難怪在宏定義的時候用的是引號,敢情是要自己加一個md5.h到目錄下去……這裡貼出來的來源於哪個軟件包呢?或者在哪個軟件包里有包含md5.h呢?

    • 吵吵说道:

      额,上面不就有代码么,我都不太记得了。你直接找我要呗。

      • CO2说道:

        呵呵,我只是想盡量用能在源里找到的包,這樣系統乾淨一點

发表评论

电子邮件地址不会被公开。 必填项已用*标注